Campaign Manager transfers

The BigQuery Data Transfer Service for Campaign Manager allows you to automatically schedule and manage recurring load jobs for Campaign Manager reporting data.

Supported Reports

The BigQuery Data Transfer Service for Campaign Manager (formerly known as DoubleClick Campaign Manager) currently supports the following reporting options:

  • Data Transfer v2 (Campaign Manager DTv2) files
  • Data Transfer v2 (Campaign Manager DTv2) match tables

For information on how Campaign Manager reports are transformed into BigQuery tables and views, see Campaign Manager report transformations.

Reporting option Support
Schedule

Every 8 hours, based on the creation time.

Not configurable

Refresh window

Last 2 days

Not configurable

Maximum backfill duration

Last 60 days

Campaign Manager retains Data Transfer files for up to 60 days. Files older than 60 days are deleted by Campaign Manager.

Before you begin

Before you create a Campaign Manager transfer:

  • Verify that you have completed all actions required to enable the BigQuery Data Transfer Service.
  • Create a BigQuery dataset to store the Campaign Manager data.
  • Ensure that your organization has access to Campaign Manager Data Transfer v2 (Campaign Manager DTv2) files. These files are delivered by the Campaign Manager team to a Cloud Storage bucket. To gain access to Campaign Manager DTv2 files, your next step depends on if you have a direct contract with Campaign Manager. In both cases, additional charges might apply.

    • If you have a contract with Campaign Manager, contact Campaign Manager support to setup Campaign Manager DTv2 files.
    • If you do not have a contract with Campaign Manager, your agency or Campaign Manager reseller may have access to Campaign Manager DTv2 files. Contact your agency or reseller for access to these files.

    After completing this step, you will receive a Cloud Storage bucket name similar to the following:

    dcdt_-dcm_account123456

  • If you intend to set up transfer run notifications for Pub/Sub, you must have pubsub.topics.setIamPolicy permissions. For more information, see BigQuery Data Transfer Service run notifications.

Required permissions

  • BigQuery: Ensure that the person creating the transfer has the following permissions in BigQuery:

    • bigquery.transfers.update permissions to create the transfer
    • Both bigquery.datasets.get and bigquery.datasets.update permissions on the target dataset

    The bigquery.admin predefined IAM role includes bigquery.transfers.update, bigquery.datasets.update and bigquery.datasets.get permissions. For more information on IAM roles in BigQuery Data Transfer Service, see Access control reference.

  • Campaign Manager: Read access to the Campaign Manager DTv2 files stored in Cloud Storage. Access is managed by the entity from which you received the Cloud Storage bucket.

Setting up a Campaign Manager transfer

Setting up a Campaign Manager transfer requires a:

  • Cloud Storage bucket: The Cloud Storage bucket URI for your Campaign Manager DTv2 files as described in Before you begin. The bucket name should look like the following:

    dcdt_-dcm_account123456

  • Campaign Manager ID: Your Campaign Manager Network, Advertiser, or Floodlight ID. Network ID is the parent in the hierarchy.

Finding your Campaign Manager ID

To retrieve your Campaign Manager ID, you can use the Cloud Storage console to examine the files in your Campaign Manager Data Transfer Cloud Storage bucket. The Campaign Manager ID is used to match files in the provided Cloud Storage bucket. The ID is embedded in the file name, not the Cloud Storage bucket name.

For example:

  • In a file named dcm_account123456_activity_*, the ID is 123456.
  • In a file named dcm_floodlight7890_activity_*, the ID is 7890.
  • In a file named dcm_advertiser567_activity_*, the ID is 567.

(Optional) Finding your file name prefix

In rare cases, the files in your Cloud Storage bucket may have custom, nonstandard file names that were set up for you by the Google Marketing Platform services team.

For example:

  • In a file named dcm_account123456custom_activity_*, the prefix is dcm_account123456custom — everything before _activity.

Contact Campaign Manager support if you need help.

Create a data transfer for Campaign Manager

Console

  1. Go to the BigQuery page in the console.

    Go to the BigQuery page

  2. Click Transfers.

  3. Click Create Transfer.

  4. On the Create Transfer page:

    • In the Source type section, for Source, choose Campaign Manager.

      Transfer source

    • In the Transfer config name section, for Display name, enter a name for the transfer such as My Transfer. The transfer name can be any value that allows you to easily identify the transfer if you need to modify it later.

      Transfer name

    • In the Schedule options section, for Schedule, leave the default value (Start now) or click Start at a set time.

      • For Repeats, choose an option for how often to run the transfer.

        • Daily (default)
        • Weekly
        • Monthly
        • Custom
        • On-demand

        If you choose an option other than Daily, additional options are available. For example, if you choose Weekly, an option appears for you to select the day of the week.

      • For Start date and run time, enter the date and time to start the transfer. If you choose Start now, this option is disabled.

        Transfer schedule

    • In the Destination settings section, for Destination dataset, choose the dataset you created to store your data.

      Transfer dataset

    • In the Data source details section:

      • For Cloud Storage bucket, enter or browse for the name of the Cloud Storage bucket that stores your Data Transfer V2.0 files. When you enter the bucket name, do not include gs://.
      • For DoubleClick ID, enter the appropriate Campaign Manager ID.
      • (Optional) If your files have standard names like these examples, leave the File name prefix field blank. Complete File name prefix only if the files in your Cloud Storage bucket have custom file names like this example.

        Campaign Manager source details

    • (Optional) In the Notification options section:

      • Click the toggle to enable email notifications. When you enable this option, the transfer administrator receives an email notification when a transfer run fails.
      • For Select a Pub/Sub topic, choose your topic name or click Create a topic. This option configures Pub/Sub run notifications for your transfer.
  5. Click Save.

bq

Enter the bq mk command and supply the transfer creation flag — --transfer_config. The following flags are also required:

  • --data_source
  • --target_dataset
  • --display_name
  • --params
bq mk --transfer_config \ --project_id=project_id                        \ --target_dataset=dataset                        \ --display_name=name                        \ --params='parameters' \ --data_source=data_source                      

Where:

  • project_id is your project ID.
  • dataset is the target dataset for the transfer configuration.
  • name is the display name for the transfer configuration. The transfer name can be any value that allows you to easily identify the transfer if you need to modify it later.
  • parameters contains the parameters for the created transfer configuration in JSON format. For example: --params='{"param":"param_value"}'. For Campaign Manager, you must supply the bucket and network_id, parameters. bucket is the Cloud Storage bucket that contains your Campaign Manager DTv2 files. network_id is your network, floodlight, or advertiser ID.
  • data_source is the data source — dcm_dt (Campaign Manager).

You can also supply the --project_id flag to specify a particular project. If --project_id isn't specified, the default project is used.

For example, the following command creates a Campaign Manager transfer named My Transfer using Campaign Manager ID 123456, Cloud Storage bucket dcdt_-dcm_account123456, and target dataset mydataset. The parameter file_name_prefix is optional and used for rare, custom file names only.

The transfer is created in the default project:

                        bq mk --transfer_config \ --target_dataset=mydataset \ --display_name='My Transfer' \ --params='{"bucket": "dcdt_-dcm_account123456","network_id": "123456","file_name_prefix":"YYY"}' \ --data_source=dcm_dt                                              

After running the command, you receive a message like the following:

[URL omitted] Please copy and paste the above URL into your web browser and follow the instructions to retrieve an authentication code.

Follow the instructions and paste the authentication code on the command line.

API

Use the projects.locations.transferConfigs.create method and supply an instance of the TransferConfig resource.

Java

Troubleshooting Campaign Manager transfer setup

If you are having issues setting up your transfer, see Campaign Manager transfer issues in Troubleshooting transfer configurations.

Querying your data

When your data is transferred to BigQuery, the data is written to ingestion-time partitioned tables. For more information, see Introduction to partitioned tables.

If you query your tables directly instead of using the auto-generated views, you must use the _PARTITIONTIME pseudo-column in your query. For more information, see Querying partitioned tables.

Campaign Manager sample queries

You can use the following Campaign Manager sample queries to analyze your transferred data. You can also use the queries in a visualization tool such as Google Data Studio. These queries are provided to help you get started on querying your Campaign Manager data with BigQuery. For additional questions on what you can do with these reports, contact your Campaign Manager technical representative.

In each of the following queries, replace the variables like dataset with your values.

Latest campaigns

The following sample query retrieves the latest campaigns.

Console

SELECT   Campaign,   Campaign_ID FROM   `dataset.match_table_campaigns_campaign_manager_id` WHERE   _DATA_DATE = _LATEST_DATE                      

bq

bq query --use_legacy_sql=false \ 'SELECT    Campaign,    Campaign_ID  FROM    `dataset.match_table_campaigns_campaign_manager_id`  WHERE    _DATA_DATE = _LATEST_DATE'                      

Impressions and distinct users by campaign

The following sample query analyzes the number of impressions and distinct users by campaign over the past 30 days.

Console

# START_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY) # END_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY)   SELECT     Campaign_ID,     _DATA_DATE AS Date,     COUNT(*) AS count,     COUNT(DISTINCT User_ID) AS du   FROM     `dataset.impression_campaign_manager_id`   WHERE     _DATA_DATE BETWEEN                        start_date                        AND                        end_date                        GROUP BY     Campaign_ID,     Date                      

bq

# START_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY) # END_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY)  bq query --use_legacy_sql=false \ 'SELECT   Campaign_ID,   _DATA_DATE AS Date,   COUNT(*) AS count,   COUNT(DISTINCT User_ID) AS du FROM   `dataset.impression_campaign_manager_id` WHERE   _DATA_DATE BETWEEN                        start_date                        AND                        end_date                        GROUP BY   Campaign_ID,   Date'                      

Latest campaigns ordered by campaign and date

The following sample query analyzes the latest campaigns in the past 30 days, ordered by campaign and date.

Console

# START_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY) # END_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY) SELECT   Campaign,   Campaign_ID,   Date FROM (   SELECT     Campaign,     Campaign_ID   FROM     `dataset.match_table_campaigns_campaign_manager_id`   WHERE     _DATA_DATE = _LATEST_DATE ),   (   SELECT     date AS Date   FROM     `bigquery-public-data.utility_us.date_greg`   WHERE     Date BETWEEN                        start_date                        AND                        end_date                        ) ORDER BY   Campaign_ID,   Date                      

bq

# START_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY) # END_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY) bq query --use_legacy_sql=false \ 'SELECT   Campaign,   Campaign_ID,   Date FROM (   SELECT     Campaign,     Campaign_ID   FROM     `dataset.match_table_campaigns_campaign_manager_id`   WHERE     _DATA_DATE = _LATEST_DATE ),   (   SELECT     date AS Date   FROM     `bigquery-public-data.utility_us.date_greg`   WHERE     Date BETWEEN                        start_date                        AND                        end_date                        ) ORDER BY   Campaign_ID,   Date'                      

Impressions and distinct users by campaign within a date range

The following sample query analyzes the number of impressions and distinct users by campaign between start_date and end_date.

Console

# START_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY) # END_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY) SELECT   base.*,   imp.count AS imp_count,   imp.du AS imp_du FROM (   SELECT     *   FROM (     SELECT       Campaign,       Campaign_ID     FROM       `dataset.match_table_campaigns_campaign_manager_id`     WHERE       _DATA_DATE = _LATEST_DATE ),     (     SELECT       date AS Date     FROM       `bigquery-public-data.utility_us.date_greg`     WHERE       Date BETWEEN                        start_date                        AND                        end_date                        ) ) AS base LEFT JOIN (   SELECT     Campaign_ID,     _DATA_DATE AS Date,     COUNT(*) AS count,     COUNT(DISTINCT User_ID) AS du   FROM     `dataset.impression_campaign_manager_id`   WHERE     _DATA_DATE BETWEEN                        start_date                        AND                        end_date                        GROUP BY     Campaign_ID,     Date ) AS imp ON   base.Campaign_ID = imp.Campaign_ID   AND base.Date = imp.Date WHERE   base.Campaign_ID = imp.Campaign_ID   AND base.Date = imp.Date ORDER BY   base.Campaign_ID,   base.Date                      

bq

# START_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY) # END_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY) bq query --use_legacy_sql=false \ 'SELECT   base.*,   imp.count AS imp_count,   imp.du AS imp_du FROM (   SELECT     *   FROM (     SELECT       Campaign,       Campaign_ID     FROM       `dataset.match_table_campaigns_campaign_manager_id`     WHERE       _DATA_DATE = _LATEST_DATE ),     (     SELECT       date AS Date     FROM       `bigquery-public-data.utility_us.date_greg`     WHERE       Date BETWEEN                        start_date                        AND                        end_date                        ) ) AS base LEFT JOIN (   SELECT     Campaign_ID,     _DATA_DATE AS Date,     COUNT(*) AS count,     COUNT(DISTINCT User_ID) AS du   FROM     `dataset.impression_campaign_manager_id`   WHERE     _DATA_DATE BETWEEN                        start_date                        AND                        end_date                        GROUP BY     Campaign_ID,     Date ) AS imp ON   base.Campaign_ID = imp.Campaign_ID   AND base.Date = imp.Date WHERE   base.Campaign_ID = imp.Campaign_ID   AND base.Date = imp.Date ORDER BY   base.Campaign_ID,   base.Date'                      

Impressions, clicks, activities and distinct users by campaign

The following sample query analyzes the number of impressions, clicks, activities, and distinct users by campaign over the past 30 days. In this query, replace the variables like campaign_list with your values. For example, replace campaign_list with a comma separated list of all the Campaign Manager campaigns of interest within the scope of the query.

Console

# START_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY) # END_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY) SELECT   base.*,   imp.count AS imp_count,   imp.du AS imp_du,   click.count AS click_count,   click.du AS click_du,   activity.count AS activity_count,   activity.du AS activity_du FROM (   SELECT     *   FROM (     SELECT       Campaign,       Campaign_ID     FROM       `dataset.match_table_campaigns_campaign_manager_id`     WHERE       _DATA_DATE = _LATEST_DATE ),     (     SELECT       date AS Date     FROM       `bigquery-public-data.utility_us.date_greg`     WHERE       Date BETWEEN DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY)       AND DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY) ) ) AS base LEFT JOIN (   SELECT     Campaign_ID,     _DATA_DATE AS Date,     COUNT(*) AS count,     COUNT(DISTINCT User_ID) AS du   FROM     `dataset.impression_campaign_manager_id`   WHERE     _DATA_DATE BETWEEN DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY)     AND DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY)   GROUP BY     Campaign_ID,     Date ) AS imp ON   base.Campaign_ID = imp.Campaign_ID   AND base.Date = imp.Date LEFT JOIN (   SELECT     Campaign_ID,     _DATA_DATE AS Date,     COUNT(*) AS count,     COUNT(DISTINCT User_ID) AS du   FROM     `dataset.click_campaign_manager_id`   WHERE     _DATA_DATE BETWEEN DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY)     AND DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY)   GROUP BY     Campaign_ID,     Date ) AS click ON   base.Campaign_ID = click.Campaign_ID   AND base.Date = click.Date LEFT JOIN (   SELECT     Campaign_ID,     _DATA_DATE AS Date,     COUNT(*) AS count,     COUNT(DISTINCT User_ID) AS du   FROM     `dataset.activity_campaign_manager_id`   WHERE     _DATA_DATE BETWEEN DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY)     AND DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY)   GROUP BY     Campaign_ID,     Date ) AS activity ON   base.Campaign_ID = activity.Campaign_ID   AND base.Date = activity.Date WHERE   base.Campaign_ID IN                        campaign_list                        AND (base.Date = imp.Date     OR base.Date = click.Date     OR base.Date = activity.Date) ORDER BY   base.Campaign_ID,   base.Date                      

bq

# START_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY) # END_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY) bq query --use_legacy_sql=false \ 'SELECT   base.*,   imp.count AS imp_count,   imp.du AS imp_du,   click.count AS click_count,   click.du AS click_du,   activity.count AS activity_count,   activity.du AS activity_du FROM (   SELECT     *   FROM (     SELECT       Campaign,       Campaign_ID     FROM       `dataset.match_table_campaigns_campaign_manager_id`     WHERE       _DATA_DATE = _LATEST_DATE ),     (     SELECT       date AS Date     FROM       `bigquery-public-data.utility_us.date_greg`     WHERE       Date BETWEEN DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY)       AND DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY) ) ) AS base LEFT JOIN (   SELECT     Campaign_ID,     _DATA_DATE AS Date,     COUNT(*) AS count,     COUNT(DISTINCT User_ID) AS du   FROM     `dataset.impression_campaign_manager_id`   WHERE     _DATA_DATE BETWEEN DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY)     AND DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY)   GROUP BY     Campaign_ID,     Date ) AS imp ON   base.Campaign_ID = imp.Campaign_ID   AND base.Date = imp.Date LEFT JOIN (   SELECT     Campaign_ID,     _DATA_DATE AS Date,     COUNT(*) AS count,     COUNT(DISTINCT User_ID) AS du   FROM     `dataset.click_campaign_manager_id`   WHERE     _DATA_DATE BETWEEN DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY)     AND DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY)   GROUP BY     Campaign_ID,     Date ) AS click ON   base.Campaign_ID = click.Campaign_ID   AND base.Date = click.Date LEFT JOIN (   SELECT     Campaign_ID,     _DATA_DATE AS Date,     COUNT(*) AS count,     COUNT(DISTINCT User_ID) AS du   FROM     `dataset.activity_campaign_manager_id`   WHERE     _DATA_DATE BETWEEN DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY)     AND DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY)   GROUP BY     Campaign_ID,     Date ) AS activity ON   base.Campaign_ID = activity.Campaign_ID   AND base.Date = activity.Date WHERE   base.Campaign_ID IN                        campaign_list                        AND (base.Date = imp.Date     OR base.Date = click.Date     OR base.Date = activity.Date) ORDER BY   base.Campaign_ID,   base.Date'                      

Campaign activity

The following sample query analyzes campaign activity over the past 30 days. In this query, replace the variables like campaign_list with your values. For example, replace campaign_list with a comma separated list of all the Campaign Manager campaigns of interest within the scope of the query.

Console

# START_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY) # END_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY) SELECT   base.*,   activity.count AS activity_count,   activity.du AS activity_du FROM (   SELECT     *   FROM (     SELECT       Campaign,       Campaign_ID     FROM       `dataset.match_table_campaigns_campaign_manager_id`     WHERE       _DATA_DATE = _LATEST_DATE ),     (     SELECT       mt_at.Activity_Group,       mt_ac.Activity,       mt_ac.Activity_Type,       mt_ac.Activity_Sub_Type,       mt_ac.Activity_ID,       mt_ac.Activity_Group_ID     FROM       `dataset.match_table_activity_cats_campaign_manager_id` AS mt_ac     JOIN (       SELECT         Activity_Group,         Activity_Group_ID       FROM         `dataset.match_table_activity_types_campaign_manager_id`       WHERE         _DATA_DATE = _LATEST_DATE ) AS mt_at     ON       mt_at.Activity_Group_ID = mt_ac.Activity_Group_ID     WHERE       _DATA_DATE = _LATEST_DATE ),     (     SELECT       date AS Date     FROM       `bigquery-public-data.utility_us.date_greg`     WHERE       Date BETWEEN                        start_date                        AND                        end_date                        ) ) AS base LEFT JOIN (   SELECT     Campaign_ID,     Activity_ID,     _DATA_DATE AS Date,     COUNT(*) AS count,     COUNT(DISTINCT User_ID) AS du   FROM     `dataset.activity_campaign_manager_id`   WHERE     _DATA_DATE BETWEEN DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY)     AND DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY)   GROUP BY     Campaign_ID,     Activity_ID,     Date ) AS activity ON   base.Campaign_ID = activity.Campaign_ID   AND base.Activity_ID = activity.Activity_ID   AND base.Date = activity.Date WHERE   base.Campaign_ID IN                        campaign_list                        AND base.Activity_ID = activity.Activity_ID ORDER BY   base.Campaign_ID,   base.Activity_Group_ID,   base.Activity_ID,   base.Date                      

bq

# START_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY) # END_DATE = DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY) bq query --use_legacy_sql=false \ 'SELECT   base.*,   activity.count AS activity_count,   activity.du AS activity_du FROM (   SELECT     *   FROM (     SELECT       Campaign,       Campaign_ID     FROM       `dataset.match_table_campaigns_campaign_manager_id`     WHERE       _DATA_DATE = _LATEST_DATE ),     (     SELECT       mt_at.Activity_Group,       mt_ac.Activity,       mt_ac.Activity_Type,       mt_ac.Activity_Sub_Type,       mt_ac.Activity_ID,       mt_ac.Activity_Group_ID     FROM       `dataset.match_table_activity_cats_campaign_manager_id` AS mt_ac     JOIN (       SELECT         Activity_Group,         Activity_Group_ID       FROM         `dataset.match_table_activity_types_campaign_manager_id`       WHERE         _DATA_DATE = _LATEST_DATE ) AS mt_at     ON       mt_at.Activity_Group_ID = mt_ac.Activity_Group_ID     WHERE       _DATA_DATE = _LATEST_DATE ),     (     SELECT       date AS Date     FROM       `bigquery-public-data.utility_us.date_greg`     WHERE       Date BETWEEN                        start_date                        AND                        end_date                        ) ) AS base LEFT JOIN (   SELECT     Campaign_ID,     Activity_ID,     _DATA_DATE AS Date,     COUNT(*) AS count,     COUNT(DISTINCT User_ID) AS du   FROM     `dataset.activity_campaign_manager_id`   WHERE     _DATA_DATE BETWEEN DATE_ADD(CURRENT_DATE(), INTERVAL -31 DAY)     AND DATE_ADD(CURRENT_DATE(), INTERVAL -1 DAY)   GROUP BY     Campaign_ID,     Activity_ID,     Date ) AS activity ON   base.Campaign_ID = activity.Campaign_ID   AND base.Activity_ID = activity.Activity_ID   AND base.Date = activity.Date WHERE   base.Campaign_ID IN                        campaign_list                        AND base.Activity_ID = activity.Activity_ID ORDER BY   base.Campaign_ID,   base.Activity_Group_ID,   base.Activity_ID,   base.Date'